

Assessing uncertainties towards an optimal 100% renewable electricity mix in France

Behrang SHIRIZADEH (CIRED - TOTAL)
Philippe QUIRION (CIRED - CNRS)
Quentin PERRIER (I4CE)

Introduction

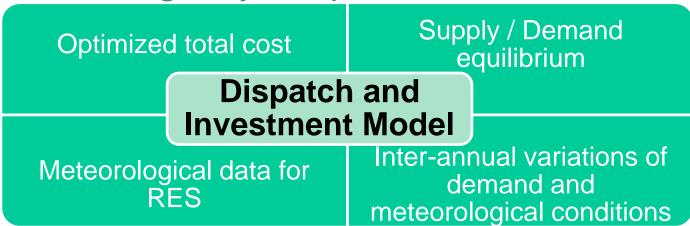
Call for tenders:

- Ground-mounted PV & Onshore wind: ~ 60 €/MWh
- Nuclear (Hinkley Point C): > 120 €/MWh
- European wholesale electiricity market: ~ 50 €/MWh

Storage?

- Doubts about the profitability of systems with «RES + Storage»
- Strong cost decrease of Li-Ion batteries and PEM electrolysers
- What does the cost of a 100% renewable system depend on?
 - Power production and storage technologies
 - Capacity constraints
 - Electricity consumption
 - Meteorological conditions

Questions addressed


- The optimal installed capacities of power production and storage technologies?
- How much does it cost?
- What do the uncertainties evoke:
 - On the cost
 - On the electricity consumption?
 - On the meteorological conditions ?

Outlines

- Model description
- Input data & assumptions
- Results
- Conclusions
- Future work
- Annex

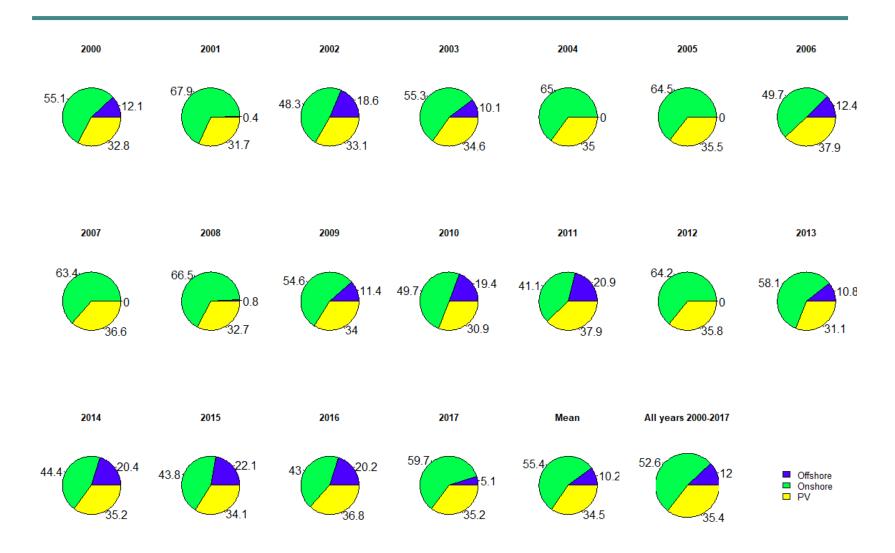
Model description (1/2)

- Dispatch and investment model
- Single node, but with aggregated VRE profiles for all 95 departments of France
- Considering France as an isolated country in a first step.
- Considering only the power sector in a first step.

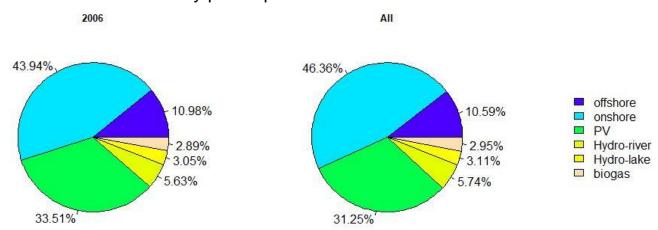
Model description (2/2)

March 5th 2019

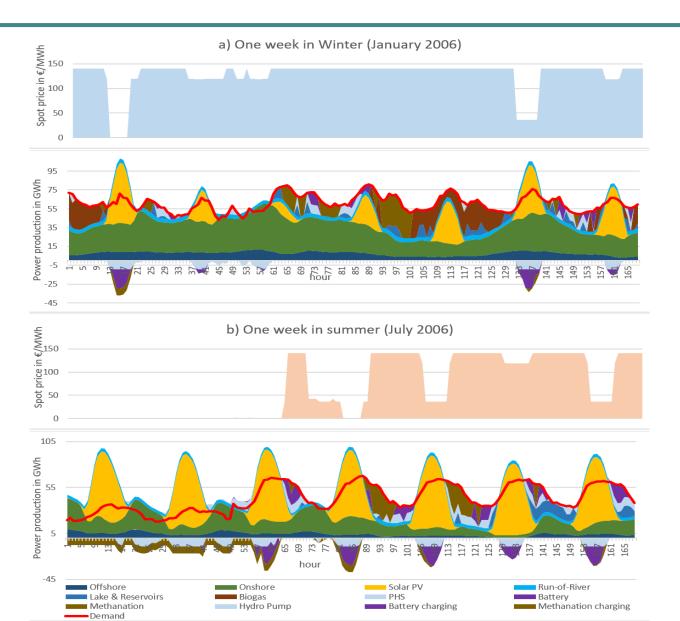
Input data & assumptions


- Continental France
- Hourly profiles over 18 years
- Electricity consumption
 - RTE (2000-2017) or Ademe central scenario (2050) or scenario négaWatt (2050)
- Offshore and onshore wind and solar PV hourly profiles:
 - Renewables.ninja (from NASA's MERRA-2 data reanalysis)
 - Great correlation with RTE's data wind 98% and PV 97% (Moraes et al 2018)
 - Offshore wind power: sites in project
 - Onshore wind and solar PV: 1 site in each department, proportional to installed capacity
- Hydro power resources : RTE 2016
- Capacity constraints (Offshore and onshore wind, PV, biogas and hydro-electricity)
 - ADEME Trajectoires d'évolution du mix électrique à horizon 2020-2060 (2018)
 - ADEME visions 2030-2050 (2013)
- Costs and losses
 - JRC 2017 Cost development of low carbon energy technologies
 - Fuel cell and hydrogen joint undertaking 2015
 - Schmidt et al (2019): Projecting the Future Levelized Cost of Electricity Storage Technologies

RESULTS


(with ADEME's consumption data)

Energetic mixes

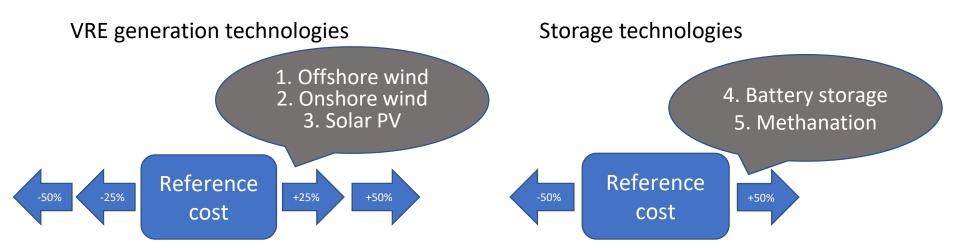

Energetic mixes

Yearly power production

INSTALLED CAPACITIES (GW)	ADEME baseline	néga-Watt	Our results for the whole 2000- 2017 period	Our results for 2006
Offshore Wind	10	28	11.77	12.36
Onshore Wind	96.5	49.5	83.30	80.08
Solar PV	63	136	112.21	122.17
Biogas	1	2.5	33.25	32.89
Battery storage	12	-	19.25	20.12
PHS	7	?	9.3	9.3
Hydrogen/methane storage	17	23	33.25	32.89

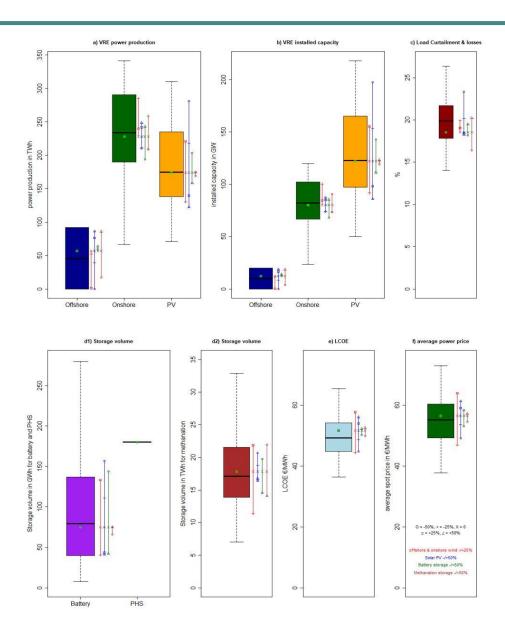
2 typical weeks

Power production and costs


Production (TWh)	Our results	Ademe	négaWatt (consumption <)
Offshore wind	57	42	115
Onshore wind	236	261	131
Solar PV	159	82	147
Biogas	15	8	4
Battery	11	?	-
H2+méthanation	8	?	16

	Our results	
Annual cost (b€/year)	21.33	
LCOE (€/MWh)	50.5	
LC + storage losses	17%	

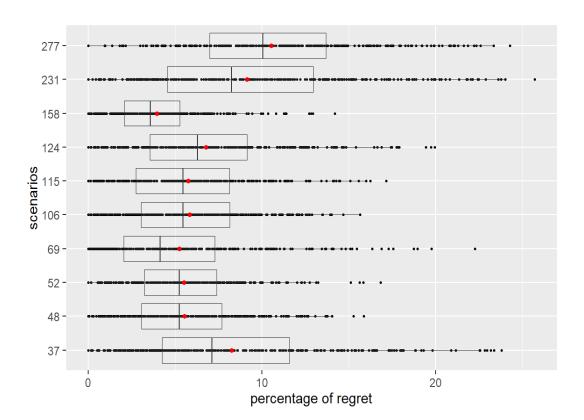
Sensitivity analysis (1/2)


Most economically uncertain technologies:

- 1. Offshore wind power
- 2. Onshore wind power
- Solar PV
- 4. Short-term storage option (Li-Ion battery)
- 5. Long-term storage option (Methanation)

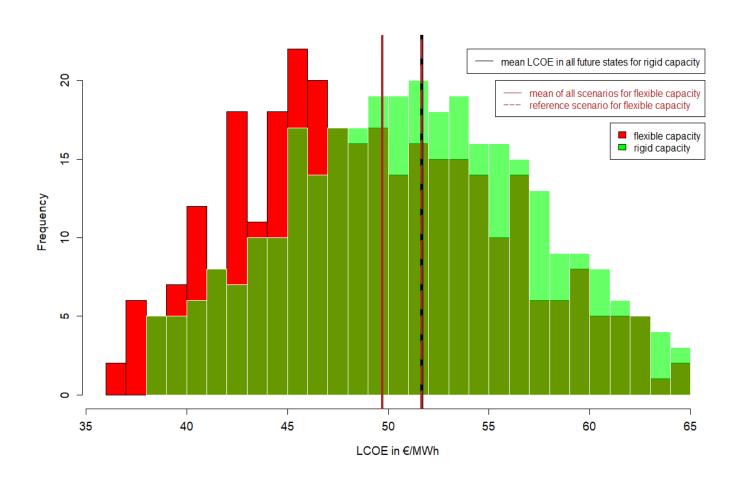
January 16th 2019

Sensitivity analysis (2/2)



March 5th 2019

Robustness (1/3)


RDM framework

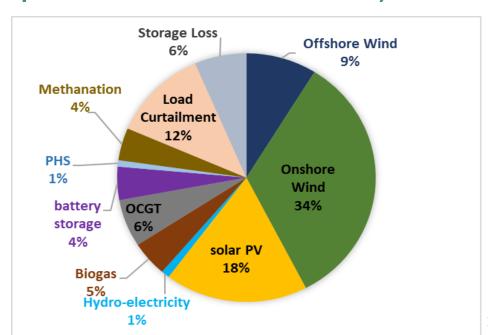
 $(s,f) = \max_{s} \{Performance(s',f)\} - Performance(regrets,f)$

March 5th 2019

Robustness (2/3)

Robustness (3/3)

- Flexible energy mix (sensitivity analysis):
- 1. Mean LCOE 49.7 €/MWh (-3.6% central scenario LCOE)
- 2. All technologies (Wind*, PV, battery, methanation): + 50%
 - LCOE 51.6 → 65 €/MWh
- 3. All technologies 50% & Wind -25%
 - LCOE 51.6 → 36 €/MWh
- Rigid energy mix (Robustness analysis):
- 1. LCOE 38 → 65 €/MWh
- 2. Mean LCOE 51.6 €/MWh (central scenario)
- 3. Mean regret 3.6% → applied to LCOE 53.5 €/MWh


LCOE estimated: 51.6 ± 3.6%

Conclusion (1/2)

- 100% renewable electricity is not only technically feasible, but also economically affordable and not expensive.
- □ One-year long modelling can have very different results for each year, the modelling should be made on the basis of longer periods (As also highlighted by *Collins et al*, 2018).
- #1. The ratio between onshore and offshore wind powers is very sensitive to the choice of the meteorological year; the share of solar PV is also relatively sensitive.
- #2. By increasing the optimization period length, we also increase the difficult meteorological conditions to handle; so the needed storage and final total cost also increases respectively, but quantitatively this effect is very weak.

Conclusion (2/2)

- #3. Taking into account the uncertainties for a flexible energy mix will decrease the expected cost by 3.6% (because of a complete flexibility in the installed capacity after the reception of future cost information)
- #4. Taking into account the uncertainties for a rigid energy mix will increase the expected cost by 3.6% (because of no flexibility in the installed capacity after the reception of future cost information)
- #5. Future power system LCOE → 51.6 €/MWh ± 3.6%

Future work

- What about new nuclear power plants and natural gas with CCS?
 - Nuclear power plant cost hypothesis
 - Natural gas market price hypothesis
 - CO₂ tax and remunération hypothesis
- Multi-vector modelling of the energetic system
 - Heat demand, transport demand and etc.
 - Renewable electricity + renewable gas coupled model
- Interconnection with neighboring countries
- Trajectories → 2050
 - Optimization over 1-2 intermediate points + 2050 ?

Merci!

www.centre-cired.fr shirizadeh@centre-cired.fr