Stochastic Defense Against Complex Grid Attacks

Mauro Escobar & Daniel Bienstock

March 5th, 2019

Columbia University - Industrial Engineering and Operations Research

Motivation

Motivation

Motivation

AC Power Flow Problem

(line physics): admittance matrix
$$Y_{km} = \begin{bmatrix} y_{kk} & y_{km} \\ y_{mk} & y_{mm} \end{bmatrix} \in \mathbb{C}^{2 \times 2}$$

$$V_k = |V_k| e^{j\theta_k} \qquad \qquad V_m = |V_m| e^{j\theta_m}$$

$$V_k = |V_k| e^{j\theta_k} \qquad \qquad V_m = |V_m| e^{j\theta_m}$$

$$V_k = |V_m| e^{j\theta_m}$$

$$V_k = |V_m| e^{j\theta_m}$$

$$V_k = |V_m| e^{j\theta_m}$$

$$V_m = |V_m| e^{j\theta_m}$$

AC Power Flow Problem

$$Y_{km} = \begin{bmatrix} y_{kk} & y_{km} \\ y_{mk} & y_{mm} \end{bmatrix} \in \mathbb{C}^{2 \times 2}$$

$$V_k = |V_k|e^{j\theta_k}$$
 $V_m = |V_m|e^{j\theta_m}$ $V_k = |V_m|e^{j\theta_m}$ $V_m = |V_m|e^{j\theta_m}$

Active (real) and reactive (imaginary) power flows:

$$\begin{aligned} p_{km} &= y_{kk}^{re} |V_k|^2 + y_{km}^{re} |V_k| |V_m| \cos(\theta_k - \theta_m) + y_{km}^{im} |V_k| |V_m| \sin(\theta_k - \theta_m) \\ q_{km} &= -y_{kk}^{im} |V_k|^2 - y_{km}^{im} |V_k| |V_m| \cos(\theta_k - \theta_m) + y_{km}^{re} |V_k| |V_m| \sin(\theta_k - \theta_m) \\ (\text{where } x = x^{re} + jx^{im}) \end{aligned}$$

Optimal Power Flow Problem

Find a solution to:

- minimize $c(\{P_k^g\}_k)$ (usually a quadratic function) • for each bus k (power-injection balance)
 - $\sum_{km \in \delta(k)} (p_{km} + jq_{km}) = (P_k^g + jQ_k^g) (P_k^d + jQ_k^d)$

• for each branch km

$$\begin{split} p_{km} &= y_{kk}^{re} |V_k|^2 + y_{km}^{re} |V_k| |V_m| \cos(\theta_k - \theta_m) + y_{km}^{im} |V_k| |V_m| \sin(\theta_k - \theta_m) \\ q_{km} &= -y_{kk}^{im} |V_k|^2 - y_{km}^{im} |V_k| |V_m| \cos(\theta_k - \theta_m) + y_{km}^{re} |V_k| |V_m| \sin(\theta_k - \theta_m) \\ & (p_{km})^2 + (q_{km})^2 \leq (S_{km}^{max})^2 \\ & |\theta_k - \theta_m| \leq \theta_{km}^{max} \end{split}$$

Optimal Power Flow Problem

Find a solution to:

- minimize $c(\{P_k^g\}_k)$ (usually a quadratic function) (power-injection balance)
- for each bus k

$$\sum_{km\in\delta(k)} (p_{km} + jq_{km}) = (P_k^g + jQ_k^g) - (P_k^d + jQ_k^d)$$

for each branch km

$$\begin{aligned} p_{km} &= y_{kk}^{re} |V_k|^2 + y_{km}^{re} |V_k| |V_m| \cos(\theta_k - \theta_m) + y_{km}^{im} |V_k| |V_m| \sin(\theta_k - \theta_m) \\ q_{km} &= -y_{kk}^{im} |V_k|^2 - y_{km}^{im} |V_k| |V_m| \cos(\theta_k - \theta_m) + y_{km}^{re} |V_k| |V_m| \sin(\theta_k - \theta_m) \\ & (p_{km})^2 + (q_{km})^2 \le (S_{km}^{max})^2 \\ & |\theta_k - \theta_m| \le \theta_{km}^{max} \end{aligned}$$

Non-convex quadratic problem!

⇒ Solvers: IPOPT, others. Matpower package for Matlab

"Cyber-Physical" attacks

Fact or fiction?

- An adversary carries out a physical alteration of a grid (example: disconnecting a power line)
- This is coordinated with a modification of sensor (PMU) signals a
 hack
- The goal is to disguise, or keep completely hidden, the nature of the attack and its likely consequences

Prior basic research

- All, or mostly, DC-based
- Intelligent procedures for enriching state estimation so as to detect and reconstruct attacks

Prior basic research

- All, or mostly, DC-based
- Intelligent procedures for enriching state estimation so as to detect and reconstruct attacks
- Liu, Ning Rieter (2009), Kim and Poor (2001)
- Deka, Baldick, Vishwanath (2015)
- Soltan, Yannakakis, Zussman (2015)

Soltan, Yannakakis, Zussman 2017

- Attacker disconnects lines plus alters sensor output in an (unknown) zone of the grid
- As a result, the equation

$$B\theta = P^g - P^d$$

is wrong because B is incorrect and measurements θ are (sparsely) false

• A statistical procedure to try to "fit" a correction to *B* and a discovery of false data

Today: load change, signal hacking - all AC

- An attacker causes physical changes in the network: in particular load changes (no generator changes)
- Attacker also hacks the signal flow: the output of some sensors is altered

Today: load change, signal hacking – all AC

- An attacker causes physical changes in the network: in particular load changes (no generator changes)
- Attacker also hacks the signal flow: the output of some sensors is altered
- Goal of the attacker is twofold:
 - Hide the location of the attack and even the fact that an attack happened
 - Cause line overloads that remain hidden

Today: load change, signal hacking - all AC

- An attacker causes physical changes in the network: in particular load changes (no generator changes)
- Attacker also hacks the signal flow: the output of some sensors is altered
- Goal of the attacker is twofold:
 - Hide the location of the attack and even the fact that an attack happened
 - Cause line overloads that remain hidden
- We assume full PMU deployment. Everything is AC based.

• PMUs everywhere: at both ends of each line

- PMUs everywhere: at both ends of each line
- Attacker has been in the system long enough to learn the system
- Attacker chooses, in advance, a non-generator, sparse set ${\cal A}$ of buses to attack and in particular a line ${\it uv}$ to overload

- PMUs everywhere: at both ends of each line
- Attacker has been in the system long enough to learn the system
- Attacker chooses, in advance, a non-generator, sparse set A of buses to attack and in particular a line uv to overload
- In near real-time, the attacker learns the current loads and their stochasticity
- \bullet In near real-time, the attacker solves computational problem that diagrams the attack on ${\cal A}$
- This will specify the load changes and the signal distortion

- PMUs everywhere: at both ends of each line
- Attacker has been in the system long enough to learn the system
- Attacker chooses, in advance, a non-generator, sparse set \mathcal{A} of buses to attack and in particular a line \underline{uv} to overload
- In near real-time, the attacker learns the current loads and their stochasticity
- In near real-time, the attacker solves computational problem that diagrams the attack on A
- This will specify the load changes and the signal distortion
- Post-attack: attacker cannot recompute much and only relies on adding "noise" to computed distorted signals

Undetectable attack: The attacker's perspective

Undetectable attack: The attacker's perspective

• For every bus, a "true" and "reported" complex voltage (magnitude and angle) V_k^T and V_k^R

- For every bus, a "true" and "reported" complex voltage (magnitude and angle) V_k^T and V_k^R
- True and reported voltages **must** agree on $\mathcal{A}^{\mathcal{C}} \cup \partial \mathcal{A}$

- For every bus, a "true" and "reported" complex voltage (magnitude and angle) V_{ν}^{T} and V_{ν}^{R}
- True and reported voltages **must** agree on $\mathcal{A}^{\mathcal{C}} \cup \partial \mathcal{A}$
- True and reported currents may differ for lines within A

- For every bus, a "true" and "reported" complex voltage (magnitude and angle) V_{k}^{T} and V_{k}^{R}
- True and reported voltages **must** agree on $\mathcal{A}^{\mathcal{C}} \cup \partial \mathcal{A}$
- True and reported currents may differ for lines within A
- Voltages and currents agree on all other lines (true and reported are identical)

- For every bus, a "true" and "reported" complex voltage (magnitude and angle) V_k^T and V_k^R
- True and reported voltages **must** agree on $\mathcal{A}^{\mathcal{C}} \cup \partial \mathcal{A}$
- True and reported currents may differ for lines within A
- Voltages and currents agree on all other lines (true and reported are identical)
- Two power flow solutions; each mush satisfy AC power flow

- For every bus, a "true" and "reported" complex voltage (magnitude and angle) V_{ν}^{T} and V_{ν}^{R}
- True and reported voltages **must** agree on $\mathcal{A}^{\mathcal{C}} \cup \partial \mathcal{A}$
- True and reported currents may differ for lines within A
- Voltages and currents agree on all other lines (true and reported are identical)
- Two power flow solutions; each mush satisfy AC power flow
- A generation change consistent with AGC (automatic generation control)

Undetectable attack: formulation (abridged!)

$$\mathsf{Max}\;(p_{uv}^{\mathsf{T}})^2 + (q_{uv}^{\mathsf{T}})^2 \tag{1a}$$

s.t.

$$\forall k \in \mathcal{A}^C \cup \partial \mathcal{A}, \quad |V_k^T| = |V_k^R|, \ \theta_k^T = \theta_k^R \tag{1b}$$

$$\forall k \in \mathcal{A}: \quad -(P_k^{d,R} + jQ_k^{d,R}) = \sum_{km \in \delta(k)} (P_{km}^R + jq_{km}^R), \quad P_k^{d,R} \ge 0 \quad \text{(1c)}$$

$$-(P_k^{d,T} + jQ_k^{d,T}) = \sum_{km \in \delta(k)} (P_{km}^T + jq_{km}^T), \quad P_k^{d,T} \ge 0 \quad (1d)$$

$$\forall k \in \mathcal{A}^C \backslash \mathcal{R}, \ \hat{P}_k^g - \hat{P}_k^d + j(\hat{Q}_k^g - \hat{Q}_k^g) = \sum_{km \in \delta(k)} (p_{km}^T + jq_{km}^T)$$
 (1e)

$$\forall k \in \mathcal{R}: \qquad P_k^g - \hat{P}_k^d + j(Q_k^g - \hat{Q}_k^g) = \sum_{r \in \mathcal{C}(k)} (p_{km}^T + jq_{km}^T) \tag{1f}$$

$$P_k^g - \hat{P}_k^g = \alpha_k \Delta \tag{1g}$$

operational limits on all buses, generators, and

all p_{km}^T , q_{km}^T related to V_k^T , V_m^T and

all
$$p_{km}^R$$
, q_{km}^R related to V_k^R , V_m^R through AC power flow laws (1i)

A large-scale example

From case2746wp (that has 2746 buses) from the Matpower case library

bus k	bus m	p_{km}^{T} p_{km}^{R}	q_{km}^{T} q_{km}^{R}		S _{km} ^{max}
1139	1137	3.36	2.66	4.29	114.00
		3.36	2.66	4.28	
1361	1141	229.01	10.49	229.25	114.00
		108.51	10.49	109.02	
1141	1491	13.46	2.41	13.68	114.00
		6.20	2.39	6.64	
1141	1138	209.25	4.44	209.29	114.00
		98.06	5.24	98.20	

Undetectable attack with strong overloads on branches (1361, 1141) and (1141, 1138)

Ideal attack: follow-up

Following the attack, attacker needs to report dynamic data that satisfy:

- current-voltage consistency: $I_{km}^R(t) \approx y_{kk} V_k^R(t) + y_{km} V_m^R(t)$
- power-injection consistency: $\sum_{km \in \delta(k)} V_k^R(t) I_{km}^R(t)^* \approx$ net-injection at k

Ideal attack: follow-up

Following the attack, attacker needs to **report dynamic data** that satisfy:

- current-voltage consistency: $I_{km}^R(t) \approx y_{kk} V_k^R(t) + y_{km} V_m^R(t)$
- power-injection consistency: $\sum\limits_{km\in\delta(k)}V_k^R(t)I_{km}^R(t)^*\approx$ net-injection at k

We assume that the attack is perpetrated in ambient conditions, and consider two scenarios:

1. Noisy Data Attack. For any bus and line in A the attacker reports

$$V_k^R(t) = rac{V_k^R}{t} +
u_k(t), \qquad I_{km}^R(t) = rac{I_{km}^R}{t} + \mu_{km}(t)$$

where $\nu_k(t)$ and $\mu_{km}(t)$ are drawn from a small variance, zero mean distribution.

Ideal attack: follow-up

Following the attack, attacker needs to **report dynamic data** that satisfy:

- current-voltage consistency: $I_{km}^R(t) \approx y_{kk} V_k^R(t) + y_{km} V_m^R(t)$
- power-injection consistency: $\sum\limits_{km\in\delta(k)}V_k^R(t)I_{km}^R(t)^*\approx$ net-injection at k

We assume that the attack is perpetrated in ambient conditions, and consider two scenarios:

1. Noisy Data Attack. For any bus and line in A the attacker reports

$$V_k^R(t) = rac{V_k^R}{t} +
u_k(t), \qquad I_{km}^R(t) = rac{I_{km}^R}{t} + \mu_{km}(t)$$

where $u_k(t)$ and $\mu_{km}(t)$ are drawn from a small variance, zero mean distribution.

2. Data Replay Attack. Attacker supplies previously observed/computed series $V_k^R(t)$, $I_{km}^R(t)$.

Defense: Random Defense Strategy

- Defender is likely to know that "something" happened (and quickly)
- We want a defensive action that is easily implementable in terms of today's grid operation
- Should not lead to false positive

Defense: Random Defense Strategy

- Defender is likely to know that "something" happened (and quickly)
- We want a defensive action that is easily implementable in terms of today's grid operation
- Should not lead to false positive

Random Defense Strategy. Iterate the following steps:

- 1. For each generator $k \in \mathcal{G}$, randomly choose δ_k such that $\sum_{k \in \mathcal{G}} \delta_k \approx 0$
- 2. Command each generator to change its output to $P_k^{\mathbf{g}} + \delta_k$
- 3. Identify inconsistencies in the observed PMUs

Remark: Feasibility in step 1, OPF-like problem

Defense: Identifying Inconsistencies

For a phasor ϕ , denote by

 ϕ^T the true value, ϕ^R the reported value, and ϕ^S the **sensed** value

Defense: Identifying Inconsistencies

For a phasor ϕ , denote by ϕ^T the true value, ϕ^R the reported value, and ϕ^S the **sensed** value

PMU standards guarantee that $|\phi^{S}-\phi^{T}|<\tau|\phi^{T}|$, for $\tau=1\%$

Defense: Identifying Inconsistencies

For a phasor ϕ , denote by ϕ^T the true value, ϕ^R the reported value, and ϕ^S the **sensed** value

PMU standards guarantee that $|\phi^{S}-\phi^{T}|<\tau|\phi^{T}|$, for $\tau=1\%$

Sensed values V_k^S , V_m^S , I_{km}^S , I_{mk}^S must satisfy following **Criteria**:

1.
$$|V_k^S - y_{mk}^{-1}(I_{mk}^S - y_{mm}V_m^S)| < \frac{2\tau|y_{mk}^{-1}|}{1-\tau}(|I_{mk}^S| + |y_{mm}||V_m^S|)$$

2.
$$|I_{km}^S - y_{kk}V_k^S - y_{km}V_m^S| < \frac{\tau}{1-\tau}(|I_{km}^S| + |y_{kk}||V_k^S| + |y_{km}||V_m^S|)$$

If reported phasors do not satisfy these criteria, then line km is flagged

Defense: Identifying Inconsistencies

Consider

and let $V_k^T(*)$ be true voltage at k at the start of the current iteration of the random defense

Defense: Identifying Inconsistencies

Consider

$$a \in \mathcal{A} \quad k \in \partial \mathcal{A} \quad m \notin \mathcal{A}$$

and let $V_k^T(*)$ be true voltage at k at the start of the current iteration of the random defense

Lemma. Suppose that

$$|V_k^T(*) - V_k^R(0)| > \frac{2\tau |y_{km}^{-1}|}{1-\tau} (|I_{mk}^T(*)| + |y_{mm}||V_m^T(*)|) + \frac{2\tau |y_{ka}^{-1}|}{1-\tau} (|I_{ak}^R(0)| + |y_{aa}||V_a^R(0)|)$$

Then, it is impossible for the noise data attacker to statistically satisfy Criterion 1 on both lines ak and mk

Pf. sketch: Use Criterion 1 for lines ak and mk.

Defense: Identifying Inconsistencies, Experiment

	Experiment 1	Experiment 2
$\sum_{k\in\mathcal{G}} \delta_k $	463.48	1220.81
Line $(k = 1139, a = 1137)$		
$ V_a^R(0) \angle\theta_a^R(0)$	1.0919∠ – 6.993°	1.0919∠ – 6.993°
$I_{ak}^R(0)$	-0.0275 + 0.0281j	-0.0275 + 0.0281j
Line $(k = 1139, m = 1110)$		
$ V_m^T(*) \angle \theta_m^T(*)$	1.0309∠ – 7.822°	$1.0391\angle - 7.848^{\circ}$
$I_{mk}^{T}(*)$	0.0905 - 0.4976j	0.1289 - 0.4901j
Voltages at $k = 1139$		
$ V_k^R(0) \angle \theta_k^R(0)$	$1.0919 \angle -6.991^{\circ}$	$1.0919 \angle -6.991^{\circ}$
$ V_k^T(*) \angle \theta_k^T(*)$	1.0104∠ − 7.822°	1.0187∠ — 7.936°
Lemma applied to bus $k=1139$		
Ratio	1.913	1.732

Motivation: Real-world PMU data exhibit **low rank** covariance matrices, and non-Gaussian "noise"

Motivation: Real-world PMU data exhibit **low rank** covariance matrices, and non-Gaussian "noise"

Consider the vector of post-attack voltage angles $\theta^R(t) = (\theta_k^R(t) : k \in \mathcal{N})$. Control center **can learn statistics** of θ^R , denote by Ω its covariance matrix. (Bienstock, Shukla, Yun, *Non-Stationary Streaming PCA*, Proc. 2017 NIPS Times Series Workshop.)

Motivation: Real-world PMU data exhibit **low rank** covariance matrices, and non-Gaussian "noise"

Consider the vector of post-attack voltage angles $\theta^R(t) = (\theta_k^R(t) : k \in \mathcal{N})$. Control center **can learn statistics** of θ^R , denote by Ω its covariance matrix. (Bienstock, Shukla, Yun, *Non-Stationary Streaming PCA*, Proc. 2017 NIPS Times Series Workshop.)

Consider:

- $\lambda_1 \geq \cdots \geq \lambda_r > 0$ eigenvalues of Ω larger than certain $\epsilon > 0$
- w_1, \ldots, w_r its corresponding eigenvectors
- $\Gamma >$ 0 larger compared to ϵ
- ullet a zero-mean distribution ${\mathcal P}$ with support in [-1,1]
- the bus susceptance matrix B (from DC-model)
- ullet set ${\mathcal F}$ of trusted generators

- $\lambda_1 \geq \cdots \geq \lambda_r > 0$ eigenvalues of Ω larger than certain $\epsilon > 0$
- w_1, \ldots, w_r its corresponding eigenvectors
- $\Gamma > 0$ larger compared to ϵ
- ullet a zero-mean distribution ${\mathcal P}$ with support in [-1,1]
- the bus susceptance matrix B (from DC-model)
- ullet set ${\mathcal F}$ of trusted generators

- $\lambda_1 \ge \cdots \ge \lambda_r > 0$ eigenvalues of Ω larger than certain $\epsilon > 0$
- \bullet w_1, \ldots, w_r its corresponding eigenvectors
- $\Gamma >$ 0 larger compared to ϵ
- ullet a zero-mean distribution ${\mathcal P}$ with support in [-1,1]
- the bus susceptance matrix B (from DC-model)
- ullet set ${\mathcal F}$ of trusted generators

Covariance Defense Procedure. Iterate:

- V1. Choose a nonzero vector $v \in \mathbb{R}^n$ such that
 - (a) $(Bv)_k = 0$ for all $k \notin \mathcal{F}$
 - (b) $\mathbf{w}_{i}^{\top} v = 0 \text{ for } i = 1, ..., r$
 - (c) for each $k \in \mathcal{F}$, $P_k^g \pm \Gamma(Bv)_k$ is feasible for generator k
- V2. For $s = 1, 2, \ldots$ perform epoch s:
 - (a) Draw \boldsymbol{x} from \mathcal{P}
 - (b) Alter power injection at each $k \in \mathcal{F}$ by $\mathbf{x}\Gamma(B\mathbf{v})_k$

Covariance Defense Procedure. Iterate:

- V1. Choose a nonzero vector $v \in \mathbb{R}^n$ such that
 - (a) $(Bv)_k = 0$ for all $k \notin \mathcal{F}$
 - (b) $\mathbf{w}_{i}^{\top} v = 0 \text{ for } i = 1, ..., r$
 - (c) for each $k \in \mathcal{F}$, $P_k^g \pm \Gamma(Bv)_k$ is feasible for generator k
- V2. For $s = 1, 2, \dots$ perform epoch s:
 - (a) Draw \boldsymbol{x} from \mathcal{P}
 - (b) Alter power injection at each $k \in \mathcal{F}$ by $\mathbf{x}\Gamma(B\mathbf{v})_k$

Covariance Defense Procedure. Iterate:

- V1. Choose a nonzero vector $v \in \mathbb{R}^n$ such that
 - (a) $(Bv)_k = 0$ for all $k \notin \mathcal{F}$
 - (b) $\mathbf{w}_{i}^{\top} v = 0 \text{ for } i = 1, ..., r$
 - (c) for each $k \in \mathcal{F}$, $P_k^g \pm \Gamma(Bv)_k$ is feasible for generator k
- V2. For $s = 1, 2, \ldots$ perform epoch s:
 - (a) Draw \boldsymbol{x} from \mathcal{P}
 - (b) Alter power injection at each $k \in \mathcal{F}$ by $\mathbf{x}\Gamma(B\mathbf{v})_k$

If
$$\delta = \mathbf{x} \Gamma \mathbf{v}$$
, then $\mathbf{E}[\delta] = 0$, $\mathbf{Var}(\delta) = \mathbf{Var}(\mathbf{x}) \Gamma^2 \mathbf{v} \mathbf{v}^{\top}$

Let
$$B\hat{m{ heta}}^{T}=P^{g}-P^{d}+Bm{\delta}$$

Covariance Defense Procedure. Iterate:

- V1. Choose a nonzero vector $v \in \mathbb{R}^n$ such that
 - (a) $(Bv)_k = 0$ for all $k \notin \mathcal{F}$
 - (b) $\mathbf{w}_{i}^{\top} v = 0 \text{ for } i = 1, ..., r$
 - (c) for each $k \in \mathcal{F}$, $P_k^g \pm \Gamma(Bv)_k$ is feasible for generator k
- V2. For $s = 1, 2, \ldots$ perform epoch s:
 - (a) Draw \boldsymbol{x} from \mathcal{P}
 - (b) Alter power injection at each $k \in \mathcal{F}$ by $\mathbf{x}\Gamma(B\mathbf{v})_k$

If
$$\delta = \mathbf{x} \Gamma \mathbf{v}$$
, then $\mathbf{E}[\delta] = 0$, $\mathbf{Var}(\delta) = \mathbf{Var}(\mathbf{x}) \Gamma^2 \mathbf{v} \mathbf{v}^{\top}$

Let
$$B\hat{\boldsymbol{\theta}}^{T} = P^{g} - P^{d} + B\boldsymbol{\delta}$$

Lemma: Suppose x is stochastically independent of ambient noise.

Then, under DC model,
$$Var(\hat{\theta}^T) = Var(\theta^T) + Var(x)\Gamma^2 vv^{\top}$$
.

Final Remarks

- "Ideal" attacks that cause and hide overloads are feasible on large networks
- Two realistic mechanisms to detect an attack, when suspected, changing the generation at certain buses
 - Identifying the boundary lines of the attacked zone, or
 - Changing the covariance matrix of the vector of voltage angles
- Paper available: arxiv.org/abs/1807.06707

Final Remarks

- "Ideal" attacks that cause and hide overloads are feasible on large networks
- Two realistic mechanisms to detect an attack, when suspected, changing the generation at certain buses
 - Identifying the boundary lines of the attacked zone, or
 - Changing the covariance matrix of the vector of voltage angles
- Paper available: arxiv.org/abs/1807.06707

Thank you!