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Motivation

A reliable electricity supply is a key consideration for energy system
planners.

Annual capacity auctions take place in Great Britan to ensure an
appropriate level of supply

Security of supply calculations must take into account interconnectors
to other system

Statistical dependence might exist between power availability in
different systems.
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Measuring reliability: the model

Assume Xt , Wt ,Dt are available conventional generation, renewable
generation and demand in the system at time t

Xt is assumed independent from all else

We call the power deficit (surplus) margin, and is given by

Mt = Xt − (Dt −Wt)︸ ︷︷ ︸
net demand

(1)

Usual risk metrics:

Loss of load expectation (LOLE): E[
∑

t I(Mt < 0)]

Expected energy unserved (EEU): E[
∑

t max{−Mt , 0}]
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Estimating the net demand distribution

‘hindcast’ approach: Use empirical distribution function of historic
data:

F̂D−W (y) =
1

n

n∑
t=1

I(dt − wt ≤ x), y ∈ R (2)

Advantages:

simplicity
Allows exact calculation of metrics

Drawbacks:

risk estimates are determined by very few observations
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Hindcast risk estimates
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Extreme value theory (EVT) net demand model

EVT offers mathematically principled models for extrapolation of a
distribution’s tails.

The one-dimensional case has a closed form solution: for a distribution
F (x) and large x

F (x) ≈ exp

{
−
[

1 + ξ

(
z − µ
σ

)]−1/ξ
}

for some values of µ, σ, ξ

A univariate version of this model was used for the GB system by
Wilson & Zachary1

1A. L. Wilson and S. Zachary, “Using extreme value theory for the estimation of risk
metrics for capacity adequacy assessment,”Preprint available atarXiv:1907.13050, 2019
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EVT model

We use a bivariate logistic EV model for IRL-GB net demand

Standardising marginal distributions to Gumbel variables Y1,Y2, then
for large y1, y2

P(Y1 ≤ y1,Y2 ≤ y2) ≈ exp
(
−
(

exp
(
−y1
α

)
+ exp

(
−y2
α

))α)
The logistic model is good for data with symmetric dependence
We can see this symmetry in the data copula
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Fitted model

We can now simulate from the extrapolated tails

We sample from the logistic model with some probability (say, 5%.
Depends on model thresholds), and from the empirical distribution
otherwise.

(a) data (grey) + model simulation
(red)

(b) training data + fitted model density
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Model comparison

We can get Monte Carlo risk estimates from the model
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Conclusions

‘Hindcast’ estimates are determined by just a few points =⇒ they
might suffer from high variance

EV models might help us get more robust risk estimates

There are still things to analyse before results are complete:

sensitivity to model parameters
when do both models agree/disagree and why?
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