Modelling net demand across two area systems for resource adequacy assessment using extreme value methods

Néstor Sánchez

March 3, 2020

Motivation

- A reliable electricity supply is a key consideration for energy system planners.
- Annual capacity auctions take place in Great Britan to ensure an appropriate level of supply

Motivation

- A reliable electricity supply is a key consideration for energy system planners.
- Annual capacity auctions take place in Great Britan to ensure an appropriate level of supply
- Security of supply calculations must take into account interconnectors to other system

Motivation

- A reliable electricity supply is a key consideration for energy system planners.
- Annual capacity auctions take place in Great Britan to ensure an appropriate level of supply
- Security of supply calculations must take into account interconnectors to other system
- Statistical dependence might exist between power availability in different systems.

Measuring reliability: the model

- Assume X_t , W_t , D_t are available conventional generation, renewable generation and demand in the system at time t
 - ullet X_t is assumed independent from all else

Measuring reliability: the model

- Assume X_t , W_t , D_t are available conventional generation, renewable generation and demand in the system at time t
 - X_t is assumed independent from all else
- We call the power deficit (surplus) margin, and is given by

$$M_t = X_t - \underbrace{(D_t - W_t)}_{\text{net demand}} \tag{1}$$

Measuring reliability: the model

- Assume X_t , W_t , D_t are available conventional generation, renewable generation and demand in the system at time t
 - X_t is assumed independent from all else
- We call the power deficit (surplus) margin, and is given by

$$M_t = X_t - \underbrace{(D_t - W_t)}_{\text{net demand}} \tag{1}$$

- Usual risk metrics:
 - Loss of load expectation (LOLE): $\mathbb{E}[\sum_t \mathbb{I}(M_t < 0)]$
 - Expected energy unserved (EEU): $\mathbb{E}[\sum_t \max\{-M_t, 0\}]$

Estimating the net demand distribution

• 'hindcast' approach: Use empirical distribution function of historic data:

$$\hat{F}_{D-W}(y) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(d_t - w_t \le x), \quad y \in \mathbb{R}$$
 (2)

Estimating the net demand distribution

 'hindcast' approach: Use empirical distribution function of historic data:

$$\hat{F}_{D-W}(y) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(d_t - w_t \le x), \quad y \in \mathbb{R}$$
 (2)

- Advantages:
 - simplicity
 - Allows exact calculation of metrics

Estimating the net demand distribution

• 'hindcast' approach: Use empirical distribution function of historic data:

$$\hat{F}_{D-W}(y) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(d_t - w_t \le x), \quad y \in \mathbb{R}$$
 (2)

- Advantages:
 - simplicity
 - Allows exact calculation of metrics
- Drawbacks:
 - risk estimates are determined by very few observations

Hindcast risk estimates

Extreme value theory (EVT) net demand model

- EVT offers mathematically principled models for extrapolation of a distribution's tails.
 - The one-dimensional case has a closed form solution: for a distribution F(x) and large x

$$F(x) \approx \exp \left\{ -\left[1 + \xi \left(\frac{z - \mu}{\sigma}\right)\right]^{-1/\xi} \right\}$$

• for some values of μ, σ, ξ

 $^{^{1}}$ A. L. Wilson and S. Zachary, "Using extreme value theory for the estimation of risk metrics for capacity adequacy assessment," Preprint available atarXiv:1907.13050, 2019 $_{12/21}$

Extreme value theory (EVT) net demand model

- EVT offers mathematically principled models for extrapolation of a distribution's tails.
 - The one-dimensional case has a closed form solution: for a distribution F(x) and large x

$$F(x) pprox \exp \left\{ -\left[1 + \xi\left(rac{z - \mu}{\sigma}
ight)
ight]^{-1/\xi}
ight\}$$

- for some values of μ, σ, ξ
- \bullet A univariate version of this model was used for the GB system by Wilson & Zachary 1

 $^{^{1}}$ A. L. Wilson and S. Zachary, "Using extreme value theory for the estimation of risk metrics for capacity adequacy assessment," Preprint available atarXiv:1907.13050, 2019 $_{13/21}$

EVT model

• We use a bivariate logistic EV model for IRL-GB net demand

EVT model

- We use a bivariate logistic EV model for IRL-GB net demand
- Standardising marginal distributions to Gumbel variables Y_1 , Y_2 , then for large y_1 , y_2

$$\mathbb{P}(Y_1 \leq y_1, Y_2 \leq y_2) \approx \exp\left(-\left(\exp\left(-\frac{y_1}{\alpha}\right) + \exp\left(-\frac{y_2}{\alpha}\right)\right)^{\alpha}\right)$$

EVT model

- We use a bivariate logistic EV model for IRL-GB net demand
- Standardising marginal distributions to Gumbel variables Y_1, Y_2 , then for large y_1, y_2

$$\mathbb{P}(Y_1 \leq y_1, Y_2 \leq y_2) \approx \exp\left(-\left(\exp\left(-\frac{y_1}{\alpha}\right) + \exp\left(-\frac{y_2}{\alpha}\right)\right)^{\alpha}\right)$$

- The logistic model is good for data with symmetric dependence
- We can see this symmetry in the data copula

(a) net demand copula data

Fitted model

- We can now simulate from the extrapolated tails
 - We sample from the logistic model with some probability (say, 5%. Depends on model thresholds), and from the empirical distribution otherwise.

(a) data (grey) + model simulation (red)

Fitted model

- We can now simulate from the extrapolated tails
 - We sample from the logistic model with some probability (say, 5%. Depends on model thresholds), and from the empirical distribution otherwise.

(a) data (grey) + model simulation (red)

(b) training data + fitted model density

Model comparison

We can get Monte Carlo risk estimates from the model

(a) Risk estimation comparison

Model comparison

We can get Monte Carlo risk estimates from the model

(a) Risk estimation comparison

(b) Risk heatmap from logistic model

Conclusions

- EV models might help us get more robust risk estimates
- There are still things to analyse before results are complete:
 - sensitivity to model parameters
 - when do both models agree/disagree and why?