
Boosting Power Network Resilience
to Extreme Weather Events

by Preventive Islanding
Matthias Noebels and Mathaios Panteli

The University of Manchester
matthias.noebels@manchester.ac.uk

2020 Risk Day Glasgow



Overview
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• Preventive Actions
• Preventive Islanding

• Preventive Actions under Uncertainty
• Location and Intensity

• Extensions and future work
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Initial events of blackouts in the U.S. 
from 1984-2006
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Hines, P. et al. "Trends in the history of large blackouts in the United States." Power and Energy 
Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. IEEE, 2008.
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Reliability ↔ Resilience



Implications on Infrastructure
• August 2019 blackout in the UK

• Trains stopped and couldn‘t restart 
even after power was restored

• Emergency generator in hospital 
failed

• Traffic lights failed during evening 
rush hour
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• Many parts of our society depend on electricity

• Dependency is likely to increase in the future



Increasing Power Network Resilience
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Bowtie diagram

• Operational strategy that uses the functionality of a modern smart grid



Preventive Actions
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Weather Forecast

Event type, intensity and trajectory

No action

Event
£££££ (10,000 €/MWh)

High compensation
due to lost load

Preventive action

Small cost due to demand 
response (400 €/MWh)

£
Low compensation

due to lost load



Preventive Islanding

Initial Islanded Faulted

Operational
Intentionally opened
Faulty due to extreme event
Tripped due to overload
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• Purely operational strategy
• Pre-planned and applied before the event hits
• Dynamic island boundaries
• Prevents the propagation of fault cascades

Advantages of Preventive Islanding

Demand 
response Lost load



Demand response and lost load
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Increasing load reduction with smaller islands
Increasing load reduction with less generating buses
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Noebels, Matthias, et al. "Assessing the Effect of Preventive Islanding on Power Grid Resilience." 2019 IEEE Milan PowerTech. IEEE, 2019.



Preventive Actions
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Weather Forecast

Event type, intensity and trajectory

No action

Event
High compensation

due to lost load

Preventive action

Low compensation
due to lost load

No event No cost at all Cost due to Demand Response

How certain do we have to be 
to justify a preventive action?



Uncertainty in Location
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• N-1 contingency in stressed German transmission network

Location is exactly known Location can be anywhere

Noebels, Matthias, et al. "Performance-driven Decision-Making on Preventive Actions under Uncertainty for Power Grid Resilience." IEEE Transactions on Power Systems (under review), 2020.

Multiple islandsLarge islandSmall islandN-1



Uncertainty in Intensity
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Ensemble forecast gives range of possible outcomes and their probability

Noebels, Matthias, et al. "A Probabilistic and Cost-based Decision Strategy for Power Grid Resilience using Ensemble Forecasting." PMAPS (under review), 2020.

MEAN strategy

Choose preventive action 
based on most likely 
event outcome

MAX strategy

Choose preventive action 
based on most severe 
event outcome

PROB strategy

Choose preventive action 
based on probability of 
each event outcome

Expected cost = 𝑃DR ⋅ VoDR + ∑𝑝𝜔 ⋅ 𝑃lost
𝜔 ⋅ VoLL

𝑃DR pre-event load reduction

VoDR Value of Demand Response

𝑝𝜔 probability of outcome 𝜔

𝑃lost
𝜔 lost load during event

VoLL Value of Lost Load



Average cost per event
(mean wind 30 m/s)
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Probability that mean wind speed is exceeded by 5 m/s

0 0.1 0.2 0.3 0.4

PROB strategy leads to cost reduction of around 10% compared to MEAN strategy



Extending the Cascading Fault Model
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• DC cascading fault model ignores reactive power flows

• New AC model considers underfrequency and undervoltage 
load shedding, overexcitation

Noebels, Matthias, et al. "An AC Cascading Fault Model for Resilience Analysis in Power Networks." IEEE Transactions on Power Systems (under review), 2020.



Conclusion
• Climate change stresses the need for resilience

• Preventive islanding mitigates spreading of cascading 
faults

• Network operator must balance between
• Cost due to pre-event load reduction

(can be achieved using existing smart grid capabilities)
• Less cascading faults and less compensation for lost load

• Uncertainty supports decision-making

• Extension to AC cascading fault model reveals 
additional outages and require further analysis
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