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Background

Trends in the use of renewable energy
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Solution: Frequency Support from Wind Turbines
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Frequency Support from Wind turbines

* Deloading: Optimum — Suboptimum
* Long term support (mins), e.g. frequency response

* Overproduction:
* Short term support (seconds), e.g. inertia response
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Frequency Support from Wind turbines

* Deloading: Optimum — Suboptimum
* Long term support (mins), e.g. frequency response

* Overproduction:
* Short term support (seconds), e.g. inertia response

~ Over rated wind speed — Pitch Control (without rotor speed recovery)

_ Below rated wind speed — Kinetic Energy Extraction (with recovery)
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Frequency Support from Wind turbines

* Deloading: Optimum — Suboptimum
* Long term support (mins), e.g. frequency response

e Overproduction:
* Short term support (seconds), e.g. inertia response

~ Over rated wind speed — Pitch Control (without rotor speed recovery)

_ Below rated wind speed — Kinetic Energy Extraction (with recovery)
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Problem Overview

* Recovery Effect

e System Risks
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Problem Overview

* Recovery Effect

Eliminated by introducing

* Secondary frequency dip a novel control frame

e System Risks

e Total wind power
* Available synthetic inertia (Sl)

* Mechanical loss due to rotor deceleration

Control and Power (CAP) Research Group



Imperial College
London

Problem Overview

* Recovery Effect

Eliminated by introducing

* Secondary frequency dip a novel control frame

e System Risks

* Available synthetic inertia (Sl)

* Mechanical loss due to rotor deceleration

Control and Power (CAP) Research Group



Imperial College
London

Problem Overview

* Recovery Effect

* Secondary frequency dip

e System Risks

Eliminated by introducing
a novel control frame

* Available synthetic inertia (Sl)

* Mechanical loss due to rotor deceleration
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S| Provision Control Frame
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S| Provision Control Frame

MPPT APopt - AP,
T Model »  Power Ref |2Perer | Electrical * Mechanical
> Selection Model > Model
Af (£ Pg;
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System frequgncy dynamics: H: Inertia from synchronous machine
2(H + Hs ) )Af (t) = —DAf(t) + R(t) — P, ,t € (0,t1) D: load-dependent damping

R(t): primary frequency response (Ti t)
d

P; : system disturbance
t;: time instant when S| provision stops
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MPPT APopt AP,
T Model " Power Ref APerer | Electrical » Mechanical
»  Selection Model > Model
Af(2) Pg;
APaero
Aerodynamic |,
Model
Wy
System frequgncy dynamics: H: Inertia from synchronous machine
2(H + Hs))Af(t) = —DAf(t) + R(t) — P, ,t € (0,ty) D: load-dependent damping
. R(t): primary frequency response (T% t)
2HAf(t) = —DAf(t) + R(t) — P, — AFpero(t1) Lt =t P, : system disturbance

t,: time instant when Sl provision stops
AP, .., (t;): min loss of generation for recovery
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S| Provision Control Frame
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Selection Model > Model
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System frequgncy dynamics: R H: Inertia from synchronous machine
2(H + Hs))Af(t) = —=DAf(t) + R(t) — Pp, — AP, ,(t) ,t€(0,t1) D: load-dependent damping
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R(t): primary frequency response (Ti t)
d

P; : system disturbance
t;: time instant when Sl provision stops
AP, (t): loss of generation due to Sl provision
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SI Provision Control Frame
MPPT | APopt Afe
" Model " Power Ref |APeres| Electrical > Mechanical
Selection Model > Model
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: Aerodynamic |,
R Mechanical Model )
power estimator
wT
System frequency dynamics: H: Inertia from synchronous machine

2(H + H DAf(t) = =DAF(t) + R(t) — P, — AP,,,,(t) ,t€(0,t)) D: load-dependent damping
. R R(t): primary frequency response (T% t)
2HAf(t) = —DAf(t) + R(t) — Py, — APgero () yL=1 P, : system disturbance
t;: time instant when Sl provision stops
AP, (t): loss of generation due to Sl provision
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Aggregated S| Capacity Under Wind Uncertainty
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Aggregated S| Capacity Under Wind Uncertainty

Hg; = Hg;(wro)
Wyg = Wy (Uw)
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Aggregated S| Capacity Under Wind Uncertainty

1

Hg; = Hg;(wro)
Wyg = Wy (Uw)

—— Hg; = Hg;(vy) E N

Limited'by the
converter capacity

Control and Power (CAP) Research Group

i vw,rated
\ 1 \
5 10 i 15 20 25
KE extraction ' Pitch control Uy [m/s]

20



Imperial College
London

Aggregated S| Capacity Under Wind Uncertainty
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Aggregated S| Capacity Under Wind Uncertainty
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Aggregated S| Capacity Under Wind Uncertainty
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Aggregated S| Capacity Under Wind Uncertainty
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Aggregated S| Capacity Under Wind Uncertainty
30 o
= | Hsy () = N | Hei (0, )P (v, ),
= 10 |- i — o o
- Boltis) =N [ | Hy ()P l0dP(@)dvdo
0 : UEE 20 25 g 0
KE extraction * Pitch control U [/ | > N: number of total wind turbines
0.8 —
0.6 ————
g 0.4
g
0.2
0

Control and Power (CAP) Research Group 25



Imperial College

London
Aggregated S| Capacity Under Wind Uncertainty
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System

Objective:

Constraints: -

Scheduling

min system operation cost

- frequency constraints
power balance
generator constraints
transmission constraints
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System Scheduling

Objective: min system operation cost

- frequency constraints —— 2(H + H.)Af(t) = —DAf(t) + R(t) — P, — AP, (¢)
power balance
Constraints: 4 generator constraints

H—Aﬁam(o ~ Dy Af(8)
transmission constraints

2(H + Hs)Af (t) = —(D — Ds; (Hs )Af () + R(t) — P,
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System Scheduling

Objective: min system operation cost

- frequency constraints —— 2(H + H.)Af(t) = —DAf(t) + R(t) — P, — AP, (¢)
power balance
Constraints: 4 generator constraints

H—Aﬁam(o ~ Dy Af(8)
transmission constraints

2(H + Hs)Af (t) = —(D — Ds; (Hs )Af () + R(t) — P,

. P;
. |Af| = < RoCoF,
|f| 2(H+ Hg) — 0L0fm

|Afnaairl = 1Af (Hs)| < Afm
Hg < Hgy
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System Scheduling

Objective:

Constraints: -

—

- 24 hours ~

30 min

Stochastic variable

min System Ope rat|0n Cost Inertia-dependent Frequency Response Const;arints

Time ahead
frequency constraints —— 2(H + Hy))Af(t) = —DAf(t) + R(t) — P, + AP, (0)
power balance
generator constraints

ﬂAﬁaer()(t) ~ Dy Af(8)
transmission constraints

2(H + Hs)Af (t) = —(D — Ds; (Hs )Af () + R(t) — P,

) P,
~ |Af] = < RoCoF,
|f| 2(H + Hgs) 0% 0%
|Afnadir| = |Af(HSI)| = Afm
Hg < Hgy
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System Scheduling

Objective:

Constraints: -

——) HS,

—

- 24 hours ~

30 min
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Synthetic Inertia Allocation

? .
SI of entire system Hg; — S| of individual turbine H¢, with i € I, set of WTs with SI provision
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Synthetic Inertia Allocation

? .
SI of entire system Hg; — S| of individual turbine H¢, with i € I, set of WTs with SI provision
L : N
Real time implementation: ' A i
p miln ZlEIal (Awr,m)

SI

s.t. 0 < Hi (wye) < HSi’,C

i *
ZiEI HSI - HSI
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Summary
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Thank you for your attention!
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