Towards Optimal System Scheduling with Synthetic Inertia Provision from Wind Turbines

Zhongda Chu, Dr. Fei Teng

Background

Trends in the use of renewable energy

Solution: Frequency Support from Wind Turbines

Frequency Support from Wind turbines

- Deloading: Optimum → Suboptimum
 - Long term support (mins), e.g. frequency response
- Overproduction:
 - Short term support (seconds), e.g. inertia response

Frequency Support from Wind turbines

- Deloading: Optimum → Suboptimum
 - Long term support (mins), e.g. frequency response
- Overproduction:
 - Short term support (seconds), e.g. inertia response

Over rated wind speed — Pitch Control (without rotor speed recovery)

Below rated wind speed — Kinetic Energy Extraction (with recovery)

Frequency Support from Wind turbines

- Deloading: Optimum → Suboptimum
 - Long term support (mins), e.g. frequency response
- Overproduction:
 - Short term support (seconds), e.g. inertia response

Over rated wind speed — Pitch Control (without rotor speed recovery)

Below rated wind speed — Kinetic Energy Extraction (with recovery)

Problem Overview

Recovery Effect

System Risks

Problem Overview

- Recovery Effect
 - Secondary frequency dip
- System Risks

Problem Overview

- Recovery Effect
 - Secondary frequency dip

• System Risks

Eliminated by introducing a novel control frame

Problem Overview

- Recovery Effect
 - Secondary frequency dip

Eliminated by introducing a novel control frame

- System Risks
 - Total wind power
 - Available synthetic inertia (SI)
 - Mechanical loss due to rotor deceleration

Problem Overview

- Recovery Effect
 - Secondary frequency dip

Eliminated by introducing a novel control frame

- System Risks
 - Total wind power
 - Available synthetic inertia (SI)
 - Mechanical loss due to rotor deceleration

Problem Overview

- Recovery Effect
 - Secondary frequency dip

Eliminated by introducing a novel control frame

- System Risks
 - Total wind power
 - Available synthetic inertia (SI)
 - Mechanical loss due to rotor deceleration

Predicted by the Bayesian Algorithm

SI Provision Control Frame

SI Provision Control Frame

System frequency dynamics:

$$2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L \qquad , t \in (0, t_1)$$

H: Inertia from synchronous machine

D: load-dependent damping

R(t): primary frequency response $(\frac{R}{T_d}t)$

 P_L : system disturbance

 t_1 : time instant when SI provision stops

SI Provision Control Frame

System frequency dynamics:

$$2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L \qquad , t \in (0, t_1)$$

$$2H\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L - \Delta P_{aero}(t_1) , t = t_1$$

H: Inertia from synchronous machine

D: load-dependent damping

R(t): primary frequency response $(\frac{R}{T_d}t)$

 P_L : system disturbance

 t_1 : time instant when SI provision stops

 $\Delta P_{aero}(t_1)$: min loss of generation for recovery

SI Provision Control Frame

SI Provision Control Frame

System frequency dynamics:

$$2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L - \Delta \hat{P}_{aero}(t) \quad , t \in (0, t_1)$$

H: Inertia from synchronous machine

D: load-dependent damping

R(t): primary frequency response $(\frac{R}{T_d}t)$

 P_L : system disturbance

 t_1 : time instant when SI provision stops

 $\Delta \hat{P}_{aero}(t)$: loss of generation due to SI provision

SI Provision Control Frame

System frequency dynamics:

$$2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L - \Delta \hat{P}_{aero}(t) \quad , t \in (0, t_1)$$

$$2H\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L - \Delta \hat{P}_{aero}(t_1) \qquad , t = t_1$$

H: Inertia from synchronous machine

D: load-dependent damping

R(t): primary frequency response $(\frac{R}{T_d}t)$

 P_L : system disturbance

 t_1 : time instant when SI provision stops

 $\Delta \hat{P}_{aero}(t)$: loss of generation due to SI provision

$$\begin{cases} H_{SI} = H_{SI}(\omega_{r0}) \\ \omega_{r0} = \omega_{r0}(v_w) \end{cases}$$

$$\begin{bmatrix} H_{SI} = H_{SI}(\omega_{r0}) \\ \omega_{r0} = \omega_{r0}(v_w) \end{bmatrix} \longrightarrow H_{SI} = H_{SI}(v_w) \begin{bmatrix} \frac{30}{5} \\ \frac{10}{5} \\ \frac{10}{5} \end{bmatrix}$$

$$\begin{bmatrix} \frac{30}{5} \\ \frac{10}{5} \end{bmatrix} = \frac{15}{5} \begin{bmatrix} \frac{20}{5} \\ \frac{20}{5} \end{bmatrix} = \frac{15}{5} \begin{bmatrix} \frac{2$$

Aggregated SI Capacity Under Wind Uncertainty

Wind Speed Forecasting

Aggregated SI Capacity Under Wind Uncertainty

$$\begin{cases} H_{SI} = H_{SI}(\omega_{r0}) \\ \omega_{r0} = \omega_{r0}(v_w) \end{cases} \longrightarrow H_{SI} = H_{SI}(v_w) \stackrel{\text{so}}{=} 20 \\ 10 \\ \text{Wind Speed Forecasting} \end{cases}$$
* Wind Speed Forecasting.

Wind Speed Forecasting

Aggregated SI Capacity Under Wind Uncertainty

$$H_{SI}(\sigma) = N \int_0^\infty H_{SI}(v_w) P(v_w | \sigma) dv_w$$

N: number of total wind turbines

Aggregated SI Capacity Under Wind Uncertainty

$$H_{SI}(\sigma) = N \int_0^\infty H_{SI}(v_w) P(v_w | \sigma) dv_w$$

$$E_{\sigma}(H_{SI}) = N \int_{\sigma}^{\overline{\sigma}} \int_0^\infty H_{SI}(v_w) P(v_w | \sigma) P(\sigma) dv_w d\sigma$$

N: number of total wind turbines

Aggregated SI Capacity Under Wind Uncertainty

$$H_{SI}(\sigma) = N \int_0^\infty H_{SI}(v_w) P(v_w | \sigma) dv_w$$

$$E_{\sigma}(H_{SI}) = N \int_0^{\overline{\sigma}} \int_0^\infty H_{SI}(v_w) P(v_w | \sigma) P(\sigma) dv_w d\sigma$$

N: number of total wind turbines

Choose the aggregated SI capacity, H_{SI}^{C} s.t. $P(H_{SI} \ge H_{SI}^{C}) \ge 95\%$

System Scheduling

Objective: **min** system operation cost

frequency constraints power balance *Constraints*: | generator constraints transmission constraints

System Scheduling

Objective: **min** system operation cost

power balance *Constraints*: | generator constraints transmission constraints

frequency constraints $\longrightarrow 2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L - \Delta \hat{P}_{aero}(t)$ $\int_{-\Delta \hat{P}_{aero}(t)} -\Delta \hat{P}_{aero}(t) \approx D_{SI} \Delta f(t)$ $2(H + H_{SI})\Delta \dot{f}(t) = -(D - D_{SI}(H_{SI}))\Delta f(t) + R(t) - P_{I}$

System Scheduling

Objective: min system operation cost

power balance *Constraints*: | generator constraints transmission constraints

$$|\Delta \dot{f}| = \frac{P_L}{2(H + H_{SI})} \le RoCoF_{\rm m}$$

$$|\Delta f_{nadir}| = |\Delta f(H_{SI})| \le \Delta f_m$$

$$|H_{SI}| \le H_{SI}^C$$

System Scheduling

Objective: min system operation cost

Time ahead

Constraints: -

power balance generator constraints transmission constraints

frequency constraints $\longrightarrow 2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L + \Delta \hat{P}_{gero}(t)$ $\int \int \Delta \hat{P}_{aero}(t) \approx D_{SI} \Delta f(t)$ $2(H + H_{SI})\Delta \dot{f}(t) = -(D - D_{SI}(H_{SI}))\Delta f(t) + R(t) - P_{I}$

$$|\Delta f_{nadir}| = |\Delta f(H_{SI})| \le \Delta f_m$$

 $H_{SI} \le H_{SI}^C$

System Scheduling

Objective: min system operation cost

Time ahead

Constraints: -

frequency constraints $\longrightarrow 2(H + H_{SI})\Delta \dot{f}(t) = -D\Delta f(t) + R(t) - P_L + \Delta \hat{P}_{gero}(t)$ power balance generator constraints transmission constraints

 $\int \int \Delta \hat{P}_{aero}(t) \approx D_{SI} \Delta f(t)$ $2(H + H_{SI})\Delta \dot{f}(t) = -(D - D_{SI}(H_{SI}))\Delta f(t) + R(t) - P_{I}$

$$H_S^*$$

$$|\Delta \dot{f}| = \frac{P_L}{2(H + H_{SI})} \le RoCoF_{\rm m}$$

$$|\Delta f_{nadir}| = |\Delta f(H_{SI})| \le \Delta f_m$$

$$|H_{SI}| \le H_{SI}^C$$

Synthetic Inertia Allocation

? SI of entire system $H_{SI}^* \longrightarrow {
m SI}$ of individual turbine H_{SI}^i

with $i \in I$, set of WTs with SI provision

Synthetic Inertia Allocation

? SI of entire system $H_{SI}^* \longrightarrow \mathsf{SI}$ of individual turbine H_{SI}^i

with $i \in I$, set of WTs with SI provision

Real time implementation:

$$\min_{\mathsf{H}_{\mathsf{SI}}^{i}} \quad \sum_{i \in I} \alpha_{i} \cdot \left(\Delta \omega_{r,m}^{i}\right)^{2}$$

s.t.
$$0 \le H_{SI}^i(\omega_{r0}) \le H_{SI}^{i,c}$$

$$\sum_{i\in I} H_{SI}^i = H_{SI}^*$$

Summary

Thank you for your attention!