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Solution: Frequency Support from Wind Turbines



Frequency Support from Wind turbines
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• Long term support (mins), e.g. frequency response
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• Short term support (seconds), e.g. inertia response
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Over rated wind speed — Pitch Control (without rotor speed recovery) 

Below rated wind speed — Kinetic Energy Extraction (with recovery) 
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Eliminated by introducing 
a novel control frame

Predicted by the Bayesian 
Algorithm
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95%

Bayesian Algorithm

𝜎 ∽ 𝑁(𝜎0 , 𝜏)
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SI of entire system 𝐻𝑆𝐼
∗ ⟶ SI of individual turbine 𝐻𝑆𝐼

𝑖
?

with 𝑖 ∈ 𝐼, set of WTs with SI provision

Real time implementation: min
HSI
i

∑𝑖∈𝐼𝛼𝑖 ⋅ Δ𝜔𝑟,𝑚
𝑖 2

s.t. 0 ≤ 𝐻𝑆𝐼
𝑖 𝜔𝑟0 ≤ 𝐻𝑆𝐼

𝑖,𝑐

∑𝑖∈𝐼𝐻𝑆𝐼
𝑖 = 𝐻𝑆𝐼

∗
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𝑣𝑤 𝐻𝑆𝐼

𝐶 𝐻𝑆𝐼
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Bayesian Algorithm Optimization Optimization
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Thank you for your attention!


